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Abstract

Comparisons of multiple related genomes have already pro-
duced a number of interesting findings, and sequencing re-
sources are available to obtain the genomes of many more
species. For studies of human disease, there is naturally a
strong interest in the genomes of vertebrates, especially mam-
mals. Decisions concerning the particular species to sequence
depend on a number of important factors. While much useful
and constructive discussion about these choices has ensued,
there have been few quantitative analyses addressing this is-
sue.

Here we consider two of these factors: 1) pattern discovery
of functional elements, such as transcription factor binding
site models, and 2) identification of unusually conserved se-
quence fragments. To address these issues, we examined data
from seven mammals (dog, cow, pig, rat, cat, baboon, and
chimpanzee) which are being sequenced in the NISC Com-
parative Sequencing Program. We find that, taken together,
the data from human, mouse, and the seven additional mam-
mals are only 1.5 times as effective for pattern identification
as the data from human and mouse alone. Contrastingly,
they are 3.5 times as effective for identification of conserved
fragments.

For many reasons, the sequencing of these mammalian
genomes is, and will continue to be, a valuable endeavor, but
our results suggest that its contribution to the identification
of the patterns of functional sites in DNA sequence will be
limited. Interestingly, our results are less pessimistic about
its contribution to the identification of sequence conservation,
and they suggest that the availability of additional sequences
will contribute significantly to such an endeavor.
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Problem Statement

While considerable progress has been made in the identifi-
cation of the genes comprising the human genome, and in
the identification of the products of these genes, much less
progress has been made in the identification of non-coding
functional elements, such as transcription factor binding sites.
To address this issue, we focus on two major approaches that
have been employed to computationally characterize such func-
tional elements: the characterization of DNA sequence pat-
terns for functional sites, and the identification of unusually
conserved DNA fragments.

Identifying Sequence Patterns

Pattern recognition is a crucial part of many DNA analyses,
including the identifications of transcription start sites, trans-
lation start sites, splice junctions, and cis regulatory sites.
Approaches to these tasks include those employing hidden
Markov models for sequence alignment, [Liu et al., 1999],
Markov models for gene finding, [Burge and Karlin, 1997,
Reese et al., 1997, Delcher et al., 1999], Gibbs sampling and
EM algorithms for motif finding, [Lawrence and Reilly, 1990,
Lawrence et al., 1993], and multiple sequence database min-
ing algorithms, [Johansson et al., 2003]. The advantages of
using multiple sequences stem from the averaging over the
noise present in individual observations, to discern common
models of nucleotide or residue frequencies, or to detect con-
servation. These advantages are reflected in the shrinkage
of standard error bars with increasing amounts of sequence
data. However, these advantages decrease when the data in
the input sequences are correlated, such as with the sequences
of phylogenetically closely related species. This loss of ad-
vantage, which decreases error-bar shrinkage, and thus the
effective sample size of the sequence data, can be substantial.
We present an approach to estimate this loss.

Each basepair position in a multiple alignment is char-
acterized by the set of nucleotides observed in a column of
the multiple alignment. At a basepair position within a tran-
scription factor binding site, for example, these data need
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to be combined appropriately to yield a specification for the
pattern recognized by a transcription factor. Nearly all of
the methods for these pattern identification problems char-
acterize each basepair of the pattern through the specifica-
tion, by a vector, of the probabilities over the four standard
nucleotide pairs, ~θ = (θA, θT , θC , θG), where by convention a
nucleotide pair is labeled by the name of the nucleotide on the
same DNA strand as the gene. Because our goal is to detect
and measure the proportion of preference for each possible
nucleotide pair at each position within a functional site, we
measure the contribution to pattern recognition by a collec-
tion of species, as its ability to estimate ~θ with tight error
bars. Specifically, the contribution of a collection of species,
Q~θ(species), is large when the sum of the estimator variances,
∑

b∈{A,T,C,G}Var[θb], is small.
For the estimates given here, we use the historically im-

portant phylogenetic model for nucleotide substitution de-
scribed by Neyman [1971] and Felsenstein [1981], with the
evolutionary distance between any two species calibrated by
the expected number of mutations per sequence position be-
tween those species, [Tajima and Nei, 1982, Lanave et al.,
1984, Rodŕıguez et al., 1990]. In Section 1 of the Supplemen-
tary Information we give more details on these choices, and
we show that the results have only a limited sensitivity to
these assumptions; a discussion of alternatives is presented in
Section 2.

We estimate the variances using the most widely employed
statistical approach, maximum likelihood estimations. Briefly,
in this approach, the matrix of estimates of variances and co-
variances of ~θ is obtained by taking the inverse of the Fisher
information matrix, the matrix of second derivatives of the
expected log-likelihood, [Kendall and Stuart, 1998]. Specifics
of this process can be found in Section 3 of the Supplementary
Information.

When sequences from several species are statistically in-
dependent, (i.e., each genome is evolutionarily distant from
every other genome), the sum of the estimator variances will
be inversely proportional to the number of species. Thus, it
is natural to measure Q~θ(species), for a collection of species
related by a phylogenetic tree, by the “effective number of in-
dependent species,” or simply the “effective sample size,” as
the ratio of the sum of the variances computed for any single
species divided by this sum for the tree.

Identifying Sequence Conservation

Under the assumption that functional constraints on muta-
tions will limit the number of accepted point mutations, sev-
eral approaches have been developed to identify fragments
of genomes that are more highly conserved, [Schwartz et al.,
2000]; applications of these methodologies have been success-
ful, [Slightom et al., 1997, Oeltjen et al., 1997, Jang et al.,
1999, Rijnkels et al., 2003]. For example, recent analyses of
this kind identified vast numbers of previously undiscovered
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Figure 1: Phylogenetic Tree of Mammals from Siepel and
Haussler [2003], showing the expected number of mutations
per sequence position for each tree edge.

regions of conserved DNA of unknown function, [Dermitza-
kis et al., 2003, Margulies et al., 2003]. The hope is that
the simultaneous use of multiple sequences will refine this ap-
proach, to enable these regions to be more precisely defined.
Thus, it is natural that we consider the extent to which ad-
ditional genomes will facilitate this approach.

In our model, the identification of unusually conserved
DNA fragments is captured through the specification of a
rate-of-mutation parameter, γ, which is normalized to be 1 in
the absence of selective pressures, and is reduced to a value
between 0 and 1 as a result of selective pressure. Again,
we employ a maximum likelihood approach and we assess
the contribution of a collection of species through its effect
on the height of the error bars of γ. (See Section 1 of the
Supplementary Information for more information.)

In this case, we do not calibrate the estimator variance in
terms of an effective sample size of independent species; it is
nonsensical to speak of scaling the evolutionary distance be-
tween two species when that distance is statistically infinite;
however we can measure improvement relative to the esti-
mator variance of the human-mouse combination. We will
define Qγ(species), the contribution for a collection of species
related by a phylogenetic tree, as the ratio of the estimator
variance for the human-mouse combination divided by the
estimator variance for that phylogenetic tree.

Results

Using ancestral repeats data from the NIH Intramural Se-
quencing Center (NISC) Comparative Sequencing Program,
[Thomas et al., 2003], a phylogenetic tree for nine mammals
was determined, [Siepel and Haussler, 2003], which we depict
in Figure 1. The estimated overall distribution of nucleotides
for this tree is: θA = 0.2967, θT = 0.3122, θC = 0.1949, and
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Species Q~θ(species)
1 Homo sapiens / human 1.000
2 Mus musculus / mouse 1.403
3 Canis familiaris / dog 1.614
4 Bos taurus / cow 1.758
5 Sus scrofa / pig 1.863
6 Rattus norvegicus / rat 1.952
7 Felis catus / cat 2.036
8 Papio cynocephalus anubis / baboon 2.068
9 Pan troglodytes / chimpanzee 2.074

Table 1: Identification Patterns in DNA Sequence: the
optimal greedy order in which to sequence seven remaining
mammalian genomes (after human and mouse), along with
an estimate of the resulting effective number of independent
species, Q~θ(species). These values are plotted in Figure 2.

θG = 0.1962.
Under the assumption that human and mouse are already

sequenced, we determine that the subsequent species that will
most increase the effective number of independent species,
Q~θ(species), is dog. That is, the subtree of Figure 1 con-
taining just human, mouse, and dog has the highest effective
number of independent species, among all subtrees that are
composed of human, mouse, and exactly one other species.

Once dog has been sequenced, the most useful subsequent
species is cow. Proceeding in this greedy fashion we deter-
mine the order in which to sequence the remaining mammals
(depicted in Table 1, and with the efficiency plotted in Fig-
ure 2).

The sequencing of dog will gain us only about 5/9 as much
as did the sequencing of mouse, with returns diminishing yet
further for subsequent species. Even with sequence data for
all nine of these genomes, we will barely double our ability
to characterize the sequence patterns of nucleotides, and the
Q~θ(species) values are worse with a less uniform ~θ or with
γ < 1.

Note that for the tree of Figure 1, rat would have been
a slightly better choice than mouse for the second species
to sequence (after human). The effect of such a scenario on
Table 1 would be to exchange the order of rat and mouse, and
to very slightly perturb the second through fifth Q~θ(species)
values.

The results, with respect to the rate-of-mutation param-
eter γ, are plotted along side the results for ~θ estimation, in
Figure 3. The recommended order for sequencing the species
is the same as with pattern identification. For conservation
identification, the sequencing of dog would gain us a variance
reduction factor of about 1.7. With sequence data for all nine
of these genomes, we would nearly quadruple our ability to
identify DNA conservation, over the situation with human
and mouse alone.
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Figure 2: Identification of Patterns in DNA Sequence:
the effective number of independent species, Q~θ(species),
starting with human and mouse, and adding seven remaining
mammals in the order: dog, cow, pig, rat, cat, baboon, and
chimpanzee.
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Figure 3: Comparison of Variance Reduction Factors

in the identification of patterns in DNA sequence vs. the iden-
tification of DNA conservation. The mammals are added in
the optimal greedy order: human, mouse, dog, cow, pig, rat,
cat, baboon, and chimpanzee. Both variances are normalized,
so that the variance of the human and mouse pair is equal to
1.
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Discussion

In searching for the patterns describing transcription factor
binding sites in prokaryotes, McCue and colleagues were able
to identify transcription factor binding sites and sets of co-
regulated genes, or regulons, using only the genome sequences
of multiple related species, [McCue et al., 2001, 2002]. They
achieved these genomic-scale results because they could iden-
tify patterns likely to be transcription factor binding sites,
using a single gene and its orthologs in related species. The
results of Table 1 do not encourage a similar approach among
the mammals. It seems that significant progress in transcrip-
tion factor binding site pattern identification for mammals
will require additional data that identify multiple genes, for
which multiple observations of each will be necessary if we
are to discern a pattern of interest. For example, data from
a carefully controlled expression array study may be appro-
priate.

The addition of non-mammalian species would likely im-
prove the effective sample size substantially, but with the
tradeoff of a loss of specificity. Thus, DNA patterns associ-
ated with broadly conserved functions (such as the biosynthe-
sis of fundamental cellular components) may be identifiable
with such data sets, but the addition of non-mammal species
will not aid in the identification of those patterns that are
specific to specialized mammalian functions.

Contrastingly, the results for the identification of con-
served regions of DNA are encouraging. With sequences from
additional mammals, we will likely attain significant improve-
ment in our ability to locate regions of conserved DNA. In
particular, researchers have used conservation as a step in lo-
cating transcription factor binding sites in γ-proteobacteria,
[Rajewsky et al., 2002], metazoans, [Lenhard et al., 2003],
and monkeys, [Boffelli et al., 2003], and we can expect this
technique to become more useful in human studies with the
increasing in the availability of mammalian genomes. Un-
fortunately, as indicated above, it appears that subsequent
computational identification of the sequence patterns of func-
tional sites will not be as easy.
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Appendix 1: Nucleotide Substitution

Model

In the model described by Neyman [1971] and Felsenstein
[1981], calibrated via the technique of Tajima and Nei [1982],

Lanave et al. [1984], and Rodŕıguez et al. [1990], and slightly
expanded for presentation here, Pr[bdes|banc], the chance that
a descendant will show nucleotide bdes when an ancestor shows
nucleotide banc is given by a matrix

Mx =









Pr[A|A] Pr[T |A] Pr[C|A] Pr[G|A]
Pr[A|T ] Pr[T |T ] Pr[C|T ] Pr[G|T ]
Pr[A|C] Pr[T |C] Pr[C|C] Pr[G|C]
Pr[A|G] Pr[T |G] Pr[C|G] Pr[G|G]









= e−γkx









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









+(1− e−γkx)









θA θT θC θG
θA θT θC θG
θA θT θC θG
θA θT θC θG









where

x = the evolutionary “distance” between the ancestral
and descendant individuals,

m = the expected number of nucleotide mismatches be-
tween the two individuals,

x = −
ln(1− km)

k
,

θb = the equilibrium probability of nucleotide b,

γ = the relative rate of mutation, and

k =
1

1− (θ2
A + θ2T + θ2C + θ2G)

.

This model has the necessary features that as x→ 0+, the
transition matrix is the identity matrix; that as x→ +∞, the
transition matrix gives an equilibrium distribution indepen-
dent of which nucleotide we started with (i.e., all of the rows
are equal); and that Ma+b =MaMb, correctly modeling that
the transition resulting from evolution described by an evo-
lutionary distance a, followed by evolution described by an
evolutionary distance b, is equal to the evolution described
by the sum of the evolutionary distances.

For non-functional alignment positions (i.e., those which
are not coding, not regulatory, etc.), the equilibrium distribu-

tion ~θ is chosen to be θA = 0.2967, θT = 0.3122, θC = 0.1949,
θG = 0.1962 (or something similar that is representative of
the non-functional DNA in the genomes in question) and can
be chosen to be different to indicate functional positions. The
rate of mutation γ is 1 for non-functional alignment positions
and can be chosen to be a value between 0 and 1 to indicate
functional positions.

The scale factor k is chosen to calibrate the evolutionary
distances in the tree, so that when x andm are small, they are
nearly the same. That is, k is chosen so that limm→0+ x/m =
1 when γ = 1.
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Appendix 2: Alternate Background

Models

There is a strong indication in many settings that other nu-
cleotide substitution models, such as those that recognize the
difference between transitions (A ↔ G and C ↔ T ) and
transversions (other changes in the nucleotides), are more
powerful than is the equilibrium-based model that we have
chosen, [Kimura, 1980, Hasegawa et al., 1985, Tavaré, 1986,
Yang, 1994, Felsenstein and Churchill, 1996]. The use of our
chosen model with an equilibrium distribution on nucleotide
pairs other than the near-uniform distribution that we have
employed here, is also an alternative possibility that proves
important in other settings.

Our analyses using models other than the Felsenstein model
with the chosen distribution did result in changes in the in-
dividual qualities of the various possible subtrees to some
extent. However, in no case did they yield a change in the
ordering of these qualities, and hence, none of them indicates
a different priority order of species to sequence.

Appendix 3: Fisher information ma-

trix approach

We measure the confidence intervals for ~θ via the Fisher in-
formation matrix. Specifically, we suppose that a multiple-
alignment sequence position’s data set D is drawn randomly
according to the model of Felsenstein, as parameterized by a
distribution ~θ∗, and we measure the expected log likelihood
of the estimator ~θ via the formula

logL(~θ) =
∑

D

log(Pr[D|~θ]) Pr[D|~θ∗] .

Intuitively, our confidence limits are tight if this function falls
off quickly as ~θ deviates from ~θ∗. This rate of decline is mea-
sured by the Hessian of logL(~θ), with respect to ~θ and eval-

uated at ~θ = ~θ∗, and the matrix inverse of the negative of
the Hessian is the covariance matrix for the ~θ estimator. The
matrix trace of the covariance matrix is the sum of the estima-
tor variances for the parameters of the sought-for probability
distribution on nucleotide pairs.

Because the components of ~θ are constrained to sum to
1, there are three degrees of freedom in logL(~θ), rather than
four. A possible choice for the degrees of freedom is given by
the set of equations:

θA = ψ1 , θT = ψ2 , θC = ψ3 , θG = 1− ψ1 − ψ2 − ψ3

where each ψi value is nonnegative, and their sum is not more
than 1. We have used this set of non-degenerate parameters,
although any set of three linearly independent (not necessarily
orthogonal) parameters will do. With this choice, the matrix

of variances and covariances of the θb estimators is








1 0 0
0 1 0
0 0 1

−1 −1 −1









(

−
∂2 logL

∂ψi′ ∂ψi′′

∣

∣

∣

∣

~ψ=~ψ∗

)−1




1 0 0 −1
0 1 0 −1
0 0 1 −1



 .

The trace of this matrix, i.e., the sum of the variances, can
be computed as the sum of all of the off-diagonal elements

of

(

− ∂2 logL
∂ψ

i′
∂ψ

i′′

∣

∣

∣

~ψ=~ψ∗

)−1

, plus twice the sum of its diagonal

elements.
The confidence interval for the γ parameter was evaluated

in a similar fashion. We defined the expected log likelihood
of the estimator γ via the formula

logL(γ) =
∑

D

log(Pr[D|γ]) Pr[D|γ∗] .

We evaluated the second derivative of logL(γ), with respect
to γ and evaluated it at γ = γ∗. The reciprocal of the negative
of this second derivative is the variance for the γ estimator.
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